
N8 7- 26 563

The Factorization of Large Composite Numbers on the MPP

by

Kathy J. McKurdy, Goodyear Aerospace Corporation

Marvin C. Wunderlich, Department of Defense

1. Introduction: The continued fraction

method for factoring large integers (hereafter

referred to as CFRAC) was an ideal algorithm to

be implemented on a massively parallel

computer such as the MPP. The history of this

effort goes back many years. The first effort to

implement this algorithm on the ILLIAC IV was

thwarted first by an inadequate resolve on the

part of a funding agency and then by the sudden

dismantling of the computer itself. The second

attempt was to put the program on the English
DAP with the able assistence of Dennis

Parkinson of Queen Mary College, London. This

effort was spoiled by the inadequate amount of

time the second author was able to spend in

England in the summer of 1982. He was finally
able to devote full time on the NASA MPP

implementation in the summer of 1984 and by
September of 1985, the authors suceeded to

factor their first 60 digit number on the MPP

using about 6½ hours of array time. Although

this result added about 10 digits to the size

number we could factor using CFRAC on a serial

machine, it was already badly beaten by the
implementation of Jim Davis and Diane

Holdridge on the CRAY-1 using the quadratic

sieve, an algorithm which is clearly superior to

CFRAC for larger numbers. This work does

illustrate, however, an algorithm which is

ideally suited to the SIMD massively parallel
architecture and we describe some of the

modifications which were needed in order to

make the parallel implementation effective and
efficient.

2. The Continued Fraction Algorithm. To

describe this method, we must first describe a

method for generating small quadratic residues,

mod N, where N is the composite number we

wish to factor. An integer Q is said to be a

quadratic residue, mod N, if an integer A exists
such that

(1) Q _ A2(modN).

Pairs (Q,A) satisfying (1) can be generated

by expanding the simple continued fraction of

x/N. Space and time prevents us from

elaborating on this subject so it must suffice to

simply describe the algorithm. If we initiate the

variables d = [X/N], A_I = 1, Po = 0, Qo = 1,

Ao = d, we can generate the pair (Qk+t, Ak)
recursively from earlier pairs by the formulas

(2a) qk = [(Pk + d)/Qk]

(2b) Pk+l = qkQk--Pk

(2c) Qk+ l = (N-p2 k+l)/Qk
and

(2d) Ak+l -- qkAk + Ak_t (modN)"

Then it can be proved that

(3) Ak2 1)k+- (_ IQk+l(modN)
and

(4) Qk -< 2X/N.

Now the clever reader may recognize a novel

factoring method here. If N is the composite

number to be factored, simply generate the pairs

(Qk+l, Ak) until Qk+l is itself a square and k is

even. Then if Qk+l = X2, we have (Ak) 2 _- X 2
(mod N) or

(5) N]A 2 _ X 2 = (Ak_X)(A_ +X)"

If N = pq where p and q are both primes, there

is an even chance that one prime will divide

Ak- X and the other will divide Ak + X and in

this event, computing the greatest common

divisor GCD(N,Ak-X) will reveal either p or q
and N is factored. If this doesn't happen for Qk,

keep generating (Qk + 1, Ak) pairs until a square
Qk+l works. From (4), there are about 2X/N

different possible values of Qk and among them
there will be about N.25 squares. Thus, we

should have to generate about N.25 values of Qk
before N is factored. The clever reader should

?RI_2.1_DING PAGE BLANK NOT FILMI_D

265

congratulate himself for noticing this since

his/her algorithm is already vastly superior to

the simple divide and factor method which

requires min(p,q) operations. However, this
still consumes too much computer time to be

really competitive with the leading state-of-the-
art methods.

What we do in CFRAC is to obtain

collections of Q's whose product is a square.

Suppose I is a set of indices which defines such a
collection. We deduce from (3) that

X2-- [1 (-1)iQi-= _ A2i-I =y2(m°dN)(6)
iEl i_l

and since N = pqlX2-y2 = (X-Y)(X+Y),a

factor can be produced by computing

GCD(X- Y,N). To find a collection of Q's whose

product is a square, we attempt to factor each Q

over a fixed set of primes Pl, P2, --. ,Pk and

represent each Qi which factors completely

with a binary vector (co, el, c2, ... ,Ok) where cO
is ± 1 according to which of +Qi+l -- Ai 2 in (3)

and cj, i < 0, is one if pj divides Qi to an odd
power and zero otherwise. Note that the vector

ci is the zero vector if and only if the

corresponding value Qi is a square and a

quadratic residue, mod N. When we have
factored more than k of these values Q, we can
form a matrix M with these vectors and M will

have more rows than columns. We can perform

a Gaussian reduction on this matrix, produce
zero rows and each such zero row will represent

a collection of Q's whose product is a square.

Thus (6) is satisfied and we may be able to

factor N by computing the appropriate GCD. If

this doesn't work, we can use another such

collection of Q's since a collection whose product

is a square is generated with each zero row

produced from the Gaussian reduction.

3. The MPP Implementation: The most

time consuming aspect of this algorithm is the

factorization of the Q's. Each value of Q must be

divided by each of the k primes in the base of

primes until the number of factored Q's exceeds

k. To factor a typical 60 digit number, one must

attempt a factorization of over 100,000,000

values of Q using a base of 4,000 prime

numbers and this requires 4x1011 division

instructions. The MPP implementation

described in this section performs this task very

efficiently as well as the task of generating the

(Q,A) pairs and the final Gaussian reduction.

266

We shall discuss these three parts of the

implementation separately.

3.1. Stepping. The generation of the

(Q,A) pairs is clearly a recursive process and

there is no obvious way to employ 16,384

processors to accomplish this task in parallel.
However, Daniel Shanks and Hugh Williams

have devised a very clever algorithm for taking

giant steps in the recursion process. Knowing

(Qs+l, As) and (Qt+l, At), one can generate a

term (Qu+l, Au) whose u is very near s ÷ t.

The time needed for this composition is a

constant which does not depend on s and t.

This enables us to generate a pair (Qt+l, At)

where t is as large as we please by composing a

succession of terms with a nearby term

approximately log2t times. For this particular

implementation, we first generated (Qt+l, At)

for t near one million (1M) and then generated

16,384 pairs (Qr+l,Ar) where r was 1M, 2M ,
16384M. This was done on a fast serial machine.

Then we put a pair (Qr+l, Ar) in each of the

16,384 processors and generated successive

terms in parallel using the recursion (2). Since

the terms are 1M apart, we can generate as

many as 16,384,000,000 terms before there is

any danger of the same pair being generated in

neighboring processors.

A serious problem arose in trying to

implement the recursion described in (2) in

parallel on the the MPP. The numbers involved

are quite large. For a 60 digit factorization, the
A's are 200 bits, the P's and Q's are each 100

bits and it was not possible to perform all the

necessary arithmetic in the 900 bits of available

memory in the ARU. For this reason, we used a
fast bit plane I/O system developed by Goodyear

Aerospace to use the staging memory as

auxiliary storage. Using that package, storage
can be allocated in the stager memory in the

same way that storage is allocated in the ARU.
A set of SEND macros exists which moves data

between the stager and the ARU. SEND macros
also exist to move data between the ARU and the

Host, and the MCU and host. This package has

essentially doubled the available memory for

doing computational processing and has also

provided an easy-to-use I/O management

package for the entire algorithm. Data moves
between the ARU and the stager can concur

with computational operations which

considerably reduces the extra time needed for

the data swapping.

3.2.The Factoring. Having a different value

of Q in each processor and the corresponding

value A in the staging memory, the program
now proceeds to attempt a factorization of the

Q's over a set of primes stored as scalars in the

MCU. Actually, the MCU only contains the

differences between the consecutive primes. It

also should be pointed out that the prime base
consists of the smallest 4000 primes which are

possible divisors of the Q's, and since the Q's are

quadratic residues, mod N, only primes p for

which N is a quadratic residue, mod p, are

possible divisors of Q and so the prime base

consists of the smallest 4000 primes having this
property.

The fundamental operation is to divide all

the values of Q by the integer p in one

simultaneous ARU instruction and flag those
P.E.'s where the remainder is zero. This

operation is then repeated in the flagged

processors, toggling a parity plane until all
processors produce a non-zero remainder. The

parity plane will contain a 1 or 0 indicating

whether the primes p divided Q to an odd or

even power. The difficulty with this method is

that the divide instruction must be repeated t

times where t is the largest power of p which

divides any of the 16,384 values of Q. This can

be rather large for small primes p. Certainly
the divide instruction must be executed at least

twice for each batch of Q's so the efficiency of the
algorithm will be at most .5.

A two step algorithm is employed which

avoides this difficulty. In the first step, the

values Q are divided by each p in the prime

base exactly once, and a table is collected in

each PE which contains the set of primes Pkl,
pk 2.... , Pkl which divides the Q in that
particular processor. This table contains

between 12 and 15 primes for each Q. Then the

single step method described above is applied to
the primes in the table in order to ascertain the

parity of the power of p which exactly divides

Q. This way the inefficiency of the single step
procedure only affects about 15 division

instructions rather than 4000. A serious

difficulty arises, however, when attempting to

implement this two step procedure. In the first

step, we will be dividing 16,384 Q's by a scalar

prime p setting a FLAG to 1 wherever the

remainder is zero. Then in all processors in

which FLAG = 1, the prime p must be put at

the end of a short table in the ARU. However,
the address of the end of the table is different in

each processor. The "lock step" SIMD character

of the MPP does not permit storing a value in
different locations in different PE's.

We are indebted to Kenneth Batcher of

Goodyear Aerospace for providing an ingenious

solution to this problem. We begin by dividing

the first 200 primes into the 16,384 Q's and

setting 200 bit planes to flag the values Q

which were evenly divisible by the primes. We

now go back through the 200 bit planes and

using them as flags, push onto the shift register

the least significant 2 bits of the primes that

evenly divide the Q's. At this point, the shift

register in each PE contains the table pkl(mod

4), Pk2(mod 4), ... pkl(mod 4) where the primes
pk i are those which exactly divide the Q in that
processor. The shift register is now stored in the

least significant 2 bits of each entry of the table

we are attempting to construct. Then the same

procedure is followed for the 3 rd and 4th

significant bits, the 5th and 6th bits and so on

until the 19th and 20th significant bits of the

primes. No prime in the factor base ever exceeds
20 bits. The total number of bit instructions

used in this complicated procedure is the same
as if there were a variable address store in the

SIMD instruction set. This routine was coded by
K. Batcher in PEARL on the PECU. The value

200 was chosen because this number of bits was

the most we could spare in the 1000 bit ARU.

This procedure would be much easier to program

on an MPP with larger memory.

This entire 3-step algorithm was executed by

an MPP program called FACTOR and was able

to do one complete batch of 16,384 values of Q
in about one second of MPP time. Since the

minimum number of division instructions

needed to accomplish this task is 16,384 x 4000

= 65,536,000, this parallel routine operates at

an average rate of 15.25 nanoseconds per
instruction. The central instruction used in the

program divided a 20 bit prime into a 100 bit Q

and this used an optimally coded PEARL
instruction which uses about two thousand 100

nanosecond cycles and this averages out to

12.21 nanoseconds per division instruction.

From this, it follows that the FACTOR program

operated at an efficiency rate of 12.21/15.25 or
about 80%.

267

The program to generate the next batch of

Q's and A's took considerably longer than was

anticipated, mainly because of the tiny amount
of core allocated toeach P.E. Each STEP took

about .1 seconds, but since it took so much less

time than FACTOR, there was no driving need

to optimize this procedure.

3.3. The Gaussian Reduction. There was no

need to optimize this part of the program either.

For the earlier factorizations, a VAX program

was used to perform the reduction and it took

about 25 minutes of VAX time. By way of

comparison, over 6 hours of time was used to
perform the factoring on the MPP. On the other

hand, the very existence of 16,000 x 1,000 =

4,000 x 4000 bits of readily accessible memory
made the development of an MPP-based

Gaussian elimination program an irresistible

temptation. For this purpose, it would have

been preferable to have 4000 PE's each having

4000 bits of memory. Then, we could store each

row of the matrix in one bit plane of the MPP. In

this situation, we had to store one row of the

matrix in a quarter of a bit plane and this was

done by an arrangement of stripes in which

columns 0, 4, 8, ..., 124 of a128x128 bit

plane represented one row of the 0-1 matrix M.

With this arrangement, an entire 4000 x 4000
matrix of bits can be stored in the entire MPP

array memory, leaving very little memory for

anything else.

The usual procedure to do a Gaussian
reduction on a bit matrix is to do a series of

elementary row operations until a matrix is

obtained having a single 1-bit in each row and

column -- i.e, a permutation of the identity

matrix. One also performs the same elementary

row operations on a history matrix which was

set at the beginning to the identity matrix. If, at

anytime in this process, a zero row is produced,

the ones in the history matrix identify the rows

on the original matrix which were initially

linearly dependent. Of course, having the entire

memory of the MPP used to store the original

matrix M, there is no room for a history matrix.

Therefore, we utilized an in-place algorithm

first suggested to the author by Dennis

Parkinson and completely described in [2]. We

shall not give a detailed description of the

procedure in this paper, but the idea is to use the

"zero-space" produced by elementary row

268

operations to store the "one-space" generated in

the history matrix.

Theoretically, one should be able to always
reducea nbyn bit matrix inl + 2 + 3 +... ÷

(n- 1) = n(n- 1)/2 elementary row operations

and if one row operation takes one MPP cycle of

100 nanoseconds and n = 4000, the time should

be just under one second. Of course, the tight

loop requires branch instructions and tests

which themselves require at least 100 nano-

seconds apiece. When the reduction program

GELIM finally worked, a stop-watch timing of

the program showed that usually 8 seconds were

required to reduce the sparse matrix generated

by CFRAC.

The operation of this program highlighted

an interesting but disturbing feature of

massively parallel processing. The factoring

and Q generation portions of the program were

completely fault tolerant. Every time a plane of

(Q, A) pairs were generated, the relationship
_Q - A 2 (mod N) was tested and those

processors which failed the test were disabled
with a mask for the rest of the run. On one

occasion, there were 7 or 8 processors disabled

after several hours of MPP computation. In

GELIM, however, no such tolerance was

permitted. If just one bit were at fault anywhere

in the execution of the algorithm, the data

obtained by GELIM was rendered completely

useless. This actually occurred when the first
factorization of a never-before-factored number

was attempted. In August of 1985, The second
author was scheduled to deliver a talk at a

computational number theory conference in

Arcata, California, and on the morning of the

talk, GELIM was to triumphantly produce a set

of linearly dependent rows of the matrix M.

However, when the number of one bits in each

column of the dependent set was counted, about

3% of the 4000 columns was odd, not even as

required. Apparently, a single bit of the matrix

was in error somewhere in the algorithm and by

the end of the run, the fault spread to infect

about 6% of the column data. He never gave
that talk but rather rushed back to Goddard

where he quickly put together a hasty GELIM

on the VAX which produced the desired factors
within 2 weeks of the aborted talk. It wasn't

until last February when the first author found

the hardware bug in the MCU which caused the

occasional error and patched the MPP program

so that it would run correctly each time.

Perhaps error correction is really needed in the

ARU memory chip.

4. The Large Prime Variation. This is an

improvement of the basic factoring strategy
which has been utilized in all implementations

of CFRAC. If, after a quadratic residue has been

divided by all the admissible primes which are

less than a number x, the remaining unfactored

part F is less than x2, then F itself must be a

prime. Since F is not in the factor base, we call

these large prime factorizations. If two different

quadratic residues, Q1 and Q2, have large

primes factorizations with the same large prime

F, then the product Q1 * Q2 will have a
factorization of the form

a1 a2 a.
Q1Q2 = Pl P2 "Pj JF2"

where all the Pi are in the factor base. In the
factoring process, this means that when Q1 and

Qj have the same large prime factorization and
produce the 0-1 vectors e 1 and _2, the exclusive

OR of e_ and _2 can be added to the matrix M. In
practice, very few pairs of large prime factoriza-
tions have the same large prime F when F is

substantially larger than the largest prime in

the factor base Pk = x. In the MPP implementa-
tion of this variation, all the large prime

factorizations with F < x2/10 were saved using

a binary tree contained in the host VAX and
whenever a collision occured between two Q's,
the exclusive OR of the two variables was added

to the matrix M. This variation was added to the

MPP factoring program by the first author and

despite all the additional overhead involved

with the procedure, it improved the performance

by nearly 1.5 for numbers in the 60 digit range.

It is generally believed that the usefulness of

this variation will diminish as the size of the

number increases.

5. Results. The table below summarizes the

results of five factorizations of four different

large numbers. The first column defines the

origin of the number which was factored. In

every case, the expression in column 1 had some

algebraic and small known factors which were
divided out of the number before they were

processed by the MPP. Column 2 indicates the
size in decimal digits of the number after these
smaller factors were divided out. Column 3

indicates whether or not a straight CFRAC was

employed or the large prime variation, CFRAC-
LP. Columns 4 and 5 indicate the computer time

used. The large amount of VAX time needed for
the first two factorizations was due to an

inefficient proceedure for computing the product
of the Q's. Columns 6 and 7 lists the total

number of Q for which a factorization was

attempted and the rate at which the Q's were

processed. Note that the large prime variation
reduced substantially the number of Q's needed

for the total factorization.

References

1. M.A. Morrison and J. Brillhart. "A Method

of Factoring and the factorization of FT", Math

Comp.,29(1975), 183 - 205

2. D. Parkinson and M. C. Wunderlich, "A

compact algorithm for Gaussian elimination
over GF(2) implemented on highly parallel

computers", Parallel Computing, 1 (1984).

3. M. C. Wunderlich, "Implementing the

continued fraction factoring algorithm on

parallel machines", Math. Comp. 44(1985) 251-
260.

FIVE FACTORIZATIONS ON THE MPP

Number Digits Method MPPhours Totalhours Q attempted Qs/MPPsec

2 299-1 60 CFRAC 6.4 10.9 309,657,600 13,440

2 405- 1 60 CFRAC 4.0 11.5 182,894,592 12,701

5171+ 1 62 CFRAC 14.0 14.5 646,791,168 12,833

24°5- 1 60 CFRAC-LP 2.8 3.4 93,028,352 9,120

5149+ 1 64 CFRAC-LP 9.75 10.4 395,986,512 11,281

269

